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Introduction

About me

e PhD candidate, Trinity College Dublin
e Topic: Compilers, optimizations, scripting languages.
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Introduction

About me

e PhD candidate, Trinity College Dublin
e Topic: Compilers, optimizations, scripting languages.

PhD Dissertation

Design and Implementation of an Ahead-of-time PHP Compiler

phc (http://phpcompiler.org)
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Introduction

How not to design a scripting language

e Compilers
e Scripting Languages
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Introduction

How not to design a scripting language

e Compilers
e Scripting Languages

e Speed
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Introduction

What is a scripting language?
¢ Javascript
e Lua
e Perl
e PHP
Python
Ruby
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Introduction

What is a scripting language?
¢ Javascript
e Lua
e Perl
e PHP
Python
Ruby

Common Features:
e Dynamic typing
e Duck typing
¢ Interpreted by default S
e FFlvia C API I=I stackoverflow
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Introduction

Language implementation

e Interpreters: Easy, portable
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Introduction

Language implementation

e Interpreters: Easy, portable

e Compilers: Not too hard, sometimes portable,
optimizations
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Introduction

Language implementation

e Interpreters: Easy, portable

e Compilers: Not too hard, sometimes portable,
optimizations

NOT THE DRAGON BOOK

Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel
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Introduction

Language implementation

e Interpreters: Easy, portable

e Compilers: Not too hard, sometimes portable,
optimizations

¢ Just-in-time compilers: Very difficult, unportable, fast
interpreter.
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How not to design a scripting language

What'’s right with scripting languages?
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What'’s right with scripting languages?

© Elegant and well designed,
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What'’s right with scripting languages?

© Elegant and well designed,
@® High level of abstraction,
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How not to design a scripting language

What'’s right with scripting languages?

© Elegant and well designed,
@® High level of abstraction,
@® Dynamic typing (and duck typing).
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How not to design a scripting language

What’s wrong with scripting languages?

Symptoms: Speed, Portability
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How not to design a scripting language

What’s wrong with scripting languages?

Symptoms: Speed, Portability
Problem: Language designed for interpreters

e Run-time source code execution

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar



How not to design a scripting language

What’s wrong with scripting languages?

Symptoms: Speed, Portability

Problem: Language designed for one specific interpreter

e Run-time source code execution
¢ Foreign Function Interface

K\~\
|=l stackoverflow

How not to Design a Scripting Language Paul Biggar



How not to design a scripting language
[ leJele]e]

FFI

Foreign Function Interface based on CPython interpreter

e Access to C libraries
¢ Script C applications using Python scripts
¢ Rewrite hot code in C
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How not to design a scripting language
(o] Jelele]

FFI

FFI (good) implications

e Libraries not that slow
e Can break out of Python for slow code.
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How not to design a scripting language
[e]e] le]e]

FFI

FFI (bad) implications

e Language is allowed to be slow
e Must break out of Python for speed.
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How not to design a scripting language

[e]e]e] lo}

FFI

FFI (worse) implications

e Legacy issues
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How not to design a scripting language
[e]e]e] Jo]

FFI

FFI (worse) implications

e Legacy issues
e Reimplementations
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How not to design a scripting language
[e]e]ele] ]

FFI

FFI solution

Don’t expose yourself!

e Importing functions into Python with a Domain Specific
Language is good
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How not to design a scripting language
[e]e]ele] ]

FFI

FFI solution

Don’t expose yourself!

e Importing functions into Python with a Domain Specific
Language is good
e Only one way of FFl is better
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How not to design a scripting language
[e]e]ele] ]

FFI

FFI solution

Don’t expose yourself!
e Importing functions into Python with a Domain Specific
Language is good
e Only one way of FFl is better
¢ Declarative is best
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How not to design a scripting language
[e]e]ele] ]

FFI

FFI solution

Don’t expose yourself!
e Importing functions into Python with a Domain Specific
Language is good
Only one way of FFl is better
Declarative is best

Any reimplementation can reuse the same libraries without
any modifications

CPython itself can change without hassle
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How not to design a scripting language
00000000

Compiled and interpreted models

Dynamic source code generation

e eval and dynamic include/import

A
|=I stackoverflow

How not to Design a Scriptin Paul Biggar



How not to design a scripting language
00000000

Compiled and interpreted models

Dynamic source code generation

e eval and dynamic include/import
e meta-programming

eval (mysgl_read (...)[0]);
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How not to design a scripting language
00000000

Compiled and interpreted models

Dynamic source code generation

e eval and dynamic include/import
e meta-programming

o .rcfiles
username = "myname"
password = "mypass"
server = "srv.domain.com"
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How not to design a scripting language
00000000

Compiled and interpreted models

Dynamic source code generation

e eval and dynamic include/import
e meta-programming
o .rcfiles
¢ localization

$lang = ....;
include ("localisation/locale.$lang.php");

A
|=I stackoverflow

How not to Design a Scripti Paul Biggar



Introduction How not to design a scripting language

Compiled and interpreted models

Dynamic source code generation

We don’t even know the full
program source!!
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How not to design a scripting language
[e]e] lele]e]ele)

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

e Must use FFI for speed
¢ Static analysis
¢ Cool optimizations can’t happen
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How not to design a scripting language
[e]e] lele]e]ele)

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:
e Must use FFI for speed

¢ Static analysis
¢ Cool optimizations can’t happen

E = ’
for (i = 0; i < strlen(t); i++)
{
s[i] = tl[i];
}
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ot to design a scripting language

D00@00000
Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

e Must use FFI for speed
¢ Static analysis
¢ Cool optimizations can’t happen

t =

_temp = strlen(t);
for (i = 0; i < _temp; i++)
{
s[i] = tli];
}
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How not to design a scripting language
[e]e] lele]e]ele)

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

e Must use FFI for speed
¢ Static analysis
¢ Cool optimizations can’t happen

|
alert ($("1i’) .get (0).nodeName) ;

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar



How not to design a scripting language
[e]e] lele]e]ele)

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

e Must use FFI for speed
¢ Static analysis
¢ Cool optimizations can’t happen

|
alert ($("117)[0] .nodeName) ;
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How not to design a scripting language
[e]e]e] lelelele)

Compiled and interpreted models

JIT compiled

http://hacks.mozilla.org/2009/07/tracemonkey-overview/
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How not to design a scripting language
[e]e]e] lelelele)

Compiled and interpreted models

JIT compiled

http://hacks.mozilla.org/2009/07/tracemonkey-overview/

Type Analysis for Javascript

Simon Holm Jensen, Anders Mgller and Peter Thiemann
SAS '09
http://www.brics.dk/TAJS/
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How not to design a scripting language
[e]e]e]e] lelele)

Compiled and interpreted models

Fix at language design time

e No dynamic include; no eval.
e Compile-time meta-programming
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Compiled and interpreted models

Fix at language design time

e No dynamic include; no eval.
e Compile-time meta-programming
e .rcfiles
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How not to design a scripting language
[e]e]e]e] lelele)

Compiled and interpreted models

Fix at language design time

e No dynamic include; no eval.
e Compile-time meta-programming
e .rcfiles
e |localization
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How not to design a scripting language
[e]e]e]e]e] lele)

Compiled and interpreted models

Doing it right

e Factor
e compiled model
¢ compile-time meta-programming
o declarative FFI
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How not to design a scripting language
000000e0

Compiled and interpreted models

Open research problems

e Optimizing boxing
¢ High-level optimizations
e Combining ahead-of-time and JIT compilation
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Introduction t to design a scripting language

)0000000e

Compiled and interpreted models

Conclusion

Design the next scripting
language right
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