
Introduction How not to design a scripting language

How not to Design a Scripting Language

Paul Biggar

Department of Computer Science and Statistics
Trinity College Dublin

StackOverflow London, 28th October, 2009

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

About me

• PhD candidate, Trinity College Dublin
• Topic: Compilers, optimizations, scripting languages.

PhD Dissertation
Design and Implementation of an Ahead-of-time PHP Compiler

phc (http://phpcompiler.org)

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

About me

• PhD candidate, Trinity College Dublin
• Topic: Compilers, optimizations, scripting languages.

PhD Dissertation
Design and Implementation of an Ahead-of-time PHP Compiler

phc (http://phpcompiler.org)

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

How not to design a scripting language

• Compilers
• Scripting Languages

• Speed

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

How not to design a scripting language

• Compilers
• Scripting Languages

• Speed

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

What is a scripting language?
• Javascript
• Lua
• Perl
• PHP
• Python
• Ruby

Common Features:
• Dynamic typing
• Duck typing
• Interpreted by default
• FFI via C API

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

What is a scripting language?
• Javascript
• Lua
• Perl
• PHP
• Python
• Ruby

Common Features:
• Dynamic typing
• Duck typing
• Interpreted by default
• FFI via C API

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Language implementation

• Interpreters: Easy, portable

• Compilers: Not too hard, sometimes portable,
optimizations

NOT THE DRAGON BOOK
Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

• Just-in-time compilers: Very difficult, unportable, fast
interpreter.

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Language implementation

• Interpreters: Easy, portable
• Compilers: Not too hard, sometimes portable,

optimizations

NOT THE DRAGON BOOK
Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

• Just-in-time compilers: Very difficult, unportable, fast
interpreter.

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Language implementation

• Interpreters: Easy, portable
• Compilers: Not too hard, sometimes portable,

optimizations

NOT THE DRAGON BOOK
Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

• Just-in-time compilers: Very difficult, unportable, fast
interpreter.

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Language implementation

• Interpreters: Easy, portable
• Compilers: Not too hard, sometimes portable,

optimizations

NOT THE DRAGON BOOK
Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

• Just-in-time compilers: Very difficult, unportable, fast
interpreter.

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

What’s right with scripting languages?

1 Elegant and well designed,
2 High level of abstraction,
3 Dynamic typing (and duck typing).

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

What’s right with scripting languages?

1 Elegant and well designed,

2 High level of abstraction,
3 Dynamic typing (and duck typing).

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

What’s right with scripting languages?

1 Elegant and well designed,
2 High level of abstraction,

3 Dynamic typing (and duck typing).

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

What’s right with scripting languages?

1 Elegant and well designed,
2 High level of abstraction,
3 Dynamic typing (and duck typing).

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

What’s wrong with scripting languages?

Symptoms: Speed, Portability

Problem: Language designed for interpretersProblem: Language designed for one specific interpreter

• Run-time source code execution
• Foreign Function Interface

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

What’s wrong with scripting languages?

Symptoms: Speed, Portability

Problem: Language designed for interpreters

Problem: Language designed for one specific interpreter

• Run-time source code execution

• Foreign Function Interface

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

What’s wrong with scripting languages?

Symptoms: Speed, Portability

Problem: Language designed for interpreters

Problem: Language designed for one specific interpreter

• Run-time source code execution
• Foreign Function Interface

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

FFI

FFI

Foreign Function Interface based on CPython interpreter

• Access to C libraries
• Script C applications using Python scripts
• Rewrite hot code in C

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

FFI

FFI (good) implications

• Libraries not that slow
• Can break out of Python for slow code.

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

FFI

FFI (bad) implications

• Language is allowed to be slow
• Must break out of Python for speed.

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

FFI

FFI (worse) implications

• Legacy issues

• Reimplementations

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

FFI

FFI (worse) implications

• Legacy issues
• Reimplementations

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

FFI

FFI solution

Don’t expose yourself!

• Importing functions into Python with a Domain Specific
Language is good

• Only one way of FFI is better
• Declarative is best

• Any reimplementation can reuse the same libraries without
any modifications

• CPython itself can change without hassle

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

FFI

FFI solution

Don’t expose yourself!

• Importing functions into Python with a Domain Specific
Language is good

• Only one way of FFI is better

• Declarative is best

• Any reimplementation can reuse the same libraries without
any modifications

• CPython itself can change without hassle

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

FFI

FFI solution

Don’t expose yourself!

• Importing functions into Python with a Domain Specific
Language is good

• Only one way of FFI is better
• Declarative is best

• Any reimplementation can reuse the same libraries without
any modifications

• CPython itself can change without hassle

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

FFI

FFI solution

Don’t expose yourself!

• Importing functions into Python with a Domain Specific
Language is good

• Only one way of FFI is better
• Declarative is best

• Any reimplementation can reuse the same libraries without
any modifications

• CPython itself can change without hassle

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

Dynamic source code generation

• eval and dynamic include/import

• meta-programming

eval (mysql_read (...)[0]);

• .rc files

username = "myname"
password = "mypass"
server = "srv.domain.com"

• localization

$lang =;
include ("localisation/locale.$lang.php");

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

Dynamic source code generation

• eval and dynamic include/import
• meta-programming

eval (mysql_read (...)[0]);

• .rc files

username = "myname"
password = "mypass"
server = "srv.domain.com"

• localization

$lang =;
include ("localisation/locale.$lang.php");

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

Dynamic source code generation

• eval and dynamic include/import
• meta-programming

eval (mysql_read (...)[0]);

• .rc files

username = "myname"
password = "mypass"
server = "srv.domain.com"

• localization

$lang =;
include ("localisation/locale.$lang.php");

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

Dynamic source code generation

• eval and dynamic include/import
• meta-programming

eval (mysql_read (...)[0]);

• .rc files

username = "myname"
password = "mypass"
server = "srv.domain.com"

• localization

$lang =;
include ("localisation/locale.$lang.php");

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

Dynamic source code generation

We don’t even know the full
program source!!

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{

s[i] = t[i];
}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{

s[i] = t[i];
}

alert ($(’li’).get(0).nodeName);alert ($(’li’)[0].nodeName);

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{
s[i] = t[i];

}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{

s[i] = t[i];
}

alert ($(’li’).get(0).nodeName);alert ($(’li’)[0].nodeName);

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{

s[i] = t[i];
}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{
s[i] = t[i];

}

alert ($(’li’).get(0).nodeName);alert ($(’li’)[0].nodeName);

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{

s[i] = t[i];
}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{

s[i] = t[i];
}

alert ($(’li’).get(0).nodeName);

alert ($(’li’)[0].nodeName);

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

• Must use FFI for speed
• Static analysis
• Cool optimizations can’t happen

t = ...;
for (i = 0; i < strlen(t); i++)
{

s[i] = t[i];
}

t = ...;
_temp = strlen(t);
for (i = 0; i < _temp; i++)
{

s[i] = t[i];
}

alert ($(’li’).get(0).nodeName);

alert ($(’li’)[0].nodeName);

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

JIT compiled

Tracemonkey

http://hacks.mozilla.org/2009/07/tracemonkey-overview/

Type Analysis for Javascript

Simon Holm Jensen, Anders Møller and Peter Thiemann
SAS ’09
http://www.brics.dk/TAJS/

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

JIT compiled

Tracemonkey

http://hacks.mozilla.org/2009/07/tracemonkey-overview/

Type Analysis for Javascript

Simon Holm Jensen, Anders Møller and Peter Thiemann
SAS ’09
http://www.brics.dk/TAJS/

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

Fix at language design time

• No dynamic include; no eval.
• Compile-time meta-programming

• .rc files
• localization

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

Fix at language design time

• No dynamic include; no eval.
• Compile-time meta-programming
• .rc files

• localization

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

Fix at language design time

• No dynamic include; no eval.
• Compile-time meta-programming
• .rc files
• localization

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

Doing it right

• Factor
• compiled model
• compile-time meta-programming
• declarative FFI

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

Open research problems

• Optimizing boxing
• High-level optimizations
• Combining ahead-of-time and JIT compilation

How not to Design a Scripting Language Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

Conclusion

Design the next scripting
language right

How not to Design a Scripting Language Paul Biggar

	Introduction
	How not to design a scripting language
	FFI
	Compiled and interpreted models

