How not to Design a Scripting Language

Paul Biggar

Department of Computer Science and Statistics
Trinity College Dublin

StackOverflow London, 28th October, 2009

3\
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

Introduction

About me

e PhD candidate, Trinity College Dublin
e Topic: Compilers, optimizations, scripting languages.

A
|=I stackoverflow

How not to Design a Scripting Paul Biggar

Introduction

About me

e PhD candidate, Trinity College Dublin
e Topic: Compilers, optimizations, scripting languages.

PhD Dissertation

Design and Implementation of an Ahead-of-time PHP Compiler

phc (http://phpcompiler.org)

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

Introduction

How not to design a scripting language

e Compilers
e Scripting Languages

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

Introduction

How not to design a scripting language

e Compilers
e Scripting Languages

e Speed

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

Introduction

What is a scripting language?
¢ Javascript
e Lua
e Perl
e PHP
Python
Ruby

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

Introduction

What is a scripting language?
¢ Javascript
e Lua
e Perl
e PHP
Python
Ruby

Common Features:
e Dynamic typing
e Duck typing
¢ Interpreted by default S
e FFlvia C API I=I stackoverflow

How not to Design a Scripting Language Paul Biggar

Introduction

Language implementation

e Interpreters: Easy, portable

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

Introduction

Language implementation

e Interpreters: Easy, portable

e Compilers: Not too hard, sometimes portable,
optimizations

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

Introduction

Language implementation

e Interpreters: Easy, portable

e Compilers: Not too hard, sometimes portable,
optimizations

NOT THE DRAGON BOOK

Engineering a Compiler by Cooper/Torczon

Modern Compiler Implementation in X by Appel

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

Introduction

Language implementation

e Interpreters: Easy, portable

e Compilers: Not too hard, sometimes portable,
optimizations

¢ Just-in-time compilers: Very difficult, unportable, fast
interpreter.

K\~\
|=l stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language

What'’s right with scripting languages?

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language

What'’s right with scripting languages?

© Elegant and well designed,

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language

What'’s right with scripting languages?

© Elegant and well designed,
@® High level of abstraction,

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language

What'’s right with scripting languages?

© Elegant and well designed,
@® High level of abstraction,
@® Dynamic typing (and duck typing).

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language

What’s wrong with scripting languages?

Symptoms: Speed, Portability

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language

What’s wrong with scripting languages?

Symptoms: Speed, Portability
Problem: Language designed for interpreters

e Run-time source code execution

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language

What’s wrong with scripting languages?

Symptoms: Speed, Portability

Problem: Language designed for one specific interpreter

e Run-time source code execution
¢ Foreign Function Interface

K\~\
|=l stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language
[leJele]e]

FFI

Foreign Function Interface based on CPython interpreter

e Access to C libraries
¢ Script C applications using Python scripts
¢ Rewrite hot code in C

A
|=I stackoverflow

How not to Design a Scripting Paul Biggar

How not to design a scripting language
(o] Jelele]

FFI

FFI (good) implications

e Libraries not that slow
e Can break out of Python for slow code.

A
|=I stackoverflow

How not to Design a Scripting Paul Biggar

How not to design a scripting language
[e]e] le]e]

FFI

FFI (bad) implications

e Language is allowed to be slow
e Must break out of Python for speed.

A
|=I stackoverflow

How not to Design a Scripting Paul Biggar

How not to design a scripting language

[e]e]e] lo}

FFI

FFI (worse) implications

e Legacy issues

A
|=I stackoverflow

How not to Design a Scriptin Paul Biggar

How not to design a scripting language
[e]e]e] Jo]

FFI

FFI (worse) implications

e Legacy issues
e Reimplementations

A
|=I stackoverflow

How not to Design a Scrip Paul Biggar

How not to design a scripting language
[e]e]ele]]

FFI

FFI solution

Don’t expose yourself!

e Importing functions into Python with a Domain Specific
Language is good

A
|=I stackoverflow

How not to Design a Scripting Paul Biggar

How not to design a scripting language
[e]e]ele]]

FFI

FFI solution

Don’t expose yourself!

e Importing functions into Python with a Domain Specific
Language is good
e Only one way of FFl is better

A
|=I stackoverflow

How not to Design a Scripting Paul Biggar

How not to design a scripting language
[e]e]ele]]

FFI

FFI solution

Don’t expose yourself!
e Importing functions into Python with a Domain Specific
Language is good
e Only one way of FFl is better
¢ Declarative is best

A
|=I stackoverflow

How not to Design a Scripting Paul Biggar

How not to design a scripting language
[e]e]ele]]

FFI

FFI solution

Don’t expose yourself!
e Importing functions into Python with a Domain Specific
Language is good
Only one way of FFl is better
Declarative is best

Any reimplementation can reuse the same libraries without
any modifications

CPython itself can change without hassle

K\~\
|=l stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language
00000000

Compiled and interpreted models

Dynamic source code generation

e eval and dynamic include/import

A
|=I stackoverflow

How not to Design a Scriptin Paul Biggar

How not to design a scripting language
00000000

Compiled and interpreted models

Dynamic source code generation

e eval and dynamic include/import
e meta-programming

eval (mysgl_read (...)[0]);

A
|=I stackoverflow

How not to Design a Scripti Paul Biggar

How not to design a scripting language
00000000

Compiled and interpreted models

Dynamic source code generation

e eval and dynamic include/import
e meta-programming

o .rcfiles
username = "myname"
password = "mypass"
server = "srv.domain.com"

A
|=I stackoverflow

How not to Design a Scriptin Paul Biggar

How not to design a scripting language
00000000

Compiled and interpreted models

Dynamic source code generation

e eval and dynamic include/import
e meta-programming
o .rcfiles
¢ localization

$lang =;
include ("localisation/locale.$lang.php");

A
|=I stackoverflow

How not to Design a Scripti Paul Biggar

Introduction How not to design a scripting language

Compiled and interpreted models

Dynamic source code generation

We don’t even know the full
program source!!

M
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language
[e]e] lele]e]ele)

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

e Must use FFI for speed
¢ Static analysis
¢ Cool optimizations can’t happen

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language
[e]e] lele]e]ele)

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:
e Must use FFI for speed

¢ Static analysis
¢ Cool optimizations can’t happen

E = ’
for (i = 0; i < strlen(t); i++)
{
s[i] = tl[i];
}

K\~\
|=l stackoverflow

How not to Design a Scripting Language Paul Biggar

ot to design a scripting language

D00@00000
Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

e Must use FFI for speed
¢ Static analysis
¢ Cool optimizations can’t happen

t =

_temp = strlen(t);
for (i = 0; i < _temp; i++)
{
s[i] = tli];
}

M
|=I stackoverflow

How not to Design a Scripting Language

Paul Biggar

How not to design a scripting language
[e]e] lele]e]ele)

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

e Must use FFI for speed
¢ Static analysis
¢ Cool optimizations can’t happen

|
alert ($("1i’) .get (0).nodeName) ;

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language
[e]e] lele]e]ele)

Compiled and interpreted models

So they can’t be compiled (ahead-of-time)
Downsides:

e Must use FFI for speed
¢ Static analysis
¢ Cool optimizations can’t happen

|
alert ($("117)[0] .nodeName) ;

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language
[e]e]e] lelelele)

Compiled and interpreted models

JIT compiled

http://hacks.mozilla.org/2009/07/tracemonkey-overview/

3\
|=I stackoverflow

How not to Design a Scripting Paul Biggar

How not to design a scripting language
[e]e]e] lelelele)

Compiled and interpreted models

JIT compiled

http://hacks.mozilla.org/2009/07/tracemonkey-overview/

Type Analysis for Javascript

Simon Holm Jensen, Anders Mgller and Peter Thiemann
SAS '09
http://www.brics.dk/TAJS/

A
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

How not to design a scripting language
[e]e]e]e] lelele)

Compiled and interpreted models

Fix at language design time

e No dynamic include; no eval.
e Compile-time meta-programming

A
|=I stackoverflow

How not to Design a Scripti Paul Biggar

How not to design a scripting language
[e]e]e]e] lelele)

Compiled and interpreted models

Fix at language design time

e No dynamic include; no eval.
e Compile-time meta-programming
e .rcfiles

A
|=I stackoverflow

How not to Design a Scripti Paul Biggar

How not to design a scripting language
[e]e]e]e] lelele)

Compiled and interpreted models

Fix at language design time

e No dynamic include; no eval.
e Compile-time meta-programming
e .rcfiles
e |localization

A
|=I stackoverflow

How not to Design a Scripti Paul Biggar

How not to design a scripting language
[e]e]e]e]e] lele)

Compiled and interpreted models

Doing it right

e Factor
e compiled model
¢ compile-time meta-programming
o declarative FFI

A
|=I stackoverflow

How not to Design a Scriptin Paul Biggar

How not to design a scripting language
000000e0

Compiled and interpreted models

Open research problems

e Optimizing boxing
¢ High-level optimizations
e Combining ahead-of-time and JIT compilation

A
|=I stackoverflow

How not to Design a Scripting Paul Biggar

Introduction t to design a scripting language

)0000000e

Compiled and interpreted models

Conclusion

Design the next scripting
language right

M
|=I stackoverflow

How not to Design a Scripting Language Paul Biggar

	Introduction
	How not to design a scripting language
	FFI
	Compiled and interpreted models

