
Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Compiling and Optimizing Scripting Languages

Paul Biggar and David Gregg

Department of Computer Science and Statistics
Trinity College Dublin

Google, 18th March, 2009

Trinity College Dublin 1



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Motivation

User needs web page in 0.5 seconds

Execution time
DB access
Network latency
Browser rendering

Easier maintainance

What if execution was:

2x as fast?
10x as fast?

Trinity College Dublin 2



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Experiences with PHP

Trinity College Dublin 3



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Experiences with PHP

Trinity College Dublin 4



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

phc

http://phpcompiler.org

Ahead-of-time compiler for PHP

Edsko de Vries, John Gilbert, Paul Biggar

BSD license

Latest release: 0.2.0.3 - compiles non-OO

svn trunk: compiles most OO

Trinity College Dublin 5

http://phpcompiler.org


Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Structure of phc

Trinity College Dublin 6



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

PHP

<?php

echo "hello", "world!";

?>

Trinity College Dublin 7



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

AST

PHP_script

List<Statement>

Eval_expr (3) Nop (5)

Method_invocation (3)

NULL

(Target)
METHOD_NAME (3) List<Actual_parameter>

echo Actual_parameter (3) Actual_parameter (3)

STRING (3)

hello

STRING (3)

world!

Trinity College Dublin 8



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

HIR

<?php

$x = $a + $b + $c + $d;

?>

<?php

$TLE0 = ($a + $b);

$TLE1 = ($TLE0 + $c);

$x = ($TLE1 + $d);

?>

Trinity College Dublin 9



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

MIR

<?php

while ($cond)

echo "hello", "world!";

?>

<?php

L7:

$TLE0 = !$cond;

if ($TLE0) goto L3 else goto L6;

L6:

print(’hello’);

print(’world!’);

goto L7;

L3:

?>
Trinity College Dublin 10



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Plugins

http://phpcompiler.org/doc/latest/devmanual.html

Trinity College Dublin 11



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

XML
<?xml version="1.0"?>

<AST:PHP_script xmlns:AST="http://www.phpcompiler.org/phc-1.1">

<AST:Statement_list>

<AST:Eval_expr>

<AST:Method_invocation>

<AST:Target xsi:nil="true" />

<AST:METHOD_NAME>

<value>echo</value>

</AST:METHOD_NAME>

<AST:Actual_parameter_list>

<AST:Actual_parameter>

<bool><!-- is_ref -->false</bool>

<AST:STRING>

<value>hello</value>

</AST:STRING>

</AST:Actual_parameter>

<AST:Actual_parameter>

<bool><!-- is_ref -->false</bool>

<AST:STRING>

<value>world!</value>

</AST:STRING>

</AST:Actual_parameter>

</AST:Actual_parameter_list>

</AST:Method_invocation>

</AST:Eval_expr>

<AST:Nop>

</AST:Nop>

</AST:Statement_list>

</AST:PHP_script>

Trinity College Dublin 12



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Experiences with PHP

Trinity College Dublin 13



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

SAC 2009

A Practical Solution for Scripting Language

Compilers

Paul Biggar, Edsko de Vries and David Gregg

Department of Computer Science and Statistics
Trinity College Dublin

ACM Symposium on Applied Computing - PL track

12th March, 2009

Trinity College Dublin 14



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Sneak peak

Problem: Scripting languages present “unique” problems

(in practice)

Solution: Re-use as much of the Canonical Reference

Implementation as possible.

Trinity College Dublin 15



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Experiences with PHP

Trinity College Dublin 16



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Undefined

The PHP group claim that they have the final say in

the specification of PHP. This group’s specification is

an implementation, and there is no prose specification

or agreed validation suite. There are alternate

implementations [...] that claim to be compatible (they

don’t say what this means) with some version of PHP.

D. M. Jones. Forms of language specification: Examples from

commonly used computer languages. ISO/IEC
JTC1/SC22/OWG/N0121, February 2008.

Trinity College Dublin 17



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Batteries included

Jeff Atwood, Coding Horror, May 20th, 2008

http://www.codinghorror.com/blog/archives/001119.html

Trinity College Dublin 18



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Change between releases

<?php

var_dump (0x9fa0ff0b);

?>

PHP 5.2.1 (32-bit)

int(2147483647)

PHP 5.2.3 (32-bit)

float(2678128395)

Trinity College Dublin 19



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Run-time code generation

<?php

eval ($argv[1]);

?>

<?php

include ("mylib.php");

...

include ("plugin.php");

...

?>

Trinity College Dublin 20



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Experiences with PHP

Trinity College Dublin 21



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Use C API

Trinity College Dublin 22



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

More detail

PHP zval
Python PyObject
Ruby VALUE
Lua TValue

H. Muhammad and R. Ierusalimschy. C APIs in extension and

extensible languages. Journal of Universal Computer Science,

13(6):839–853, 2007.

Trinity College Dublin 23



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Simple listings: $i = 0

// $i = 0;

{

zval* p_i;

php_hash_find (LOCAL_ST, "i", 5863374, p_i);

php_destruct (p_i);

php_allocate (p_i);

ZVAL_LONG (*p_i, 0);

}

Trinity College Dublin 24



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Example: $i = 0

// $i = 0;

{

if (local_i == NULL)

{

local_i = EG (uninitialized_zval_ptr);

local_i->refcount++;

}

zval **p_lhs = &local_i;

zval *value;

if ((*p_lhs)->is_ref)

{

// Always overwrite the current value

value = *p_lhs;

zval_dtor (value);

}

else

{

ALLOC_INIT_ZVAL (value);

zval_ptr_dtor (p_lhs);

*p_lhs = value;

}

ZVAL_LONG (value, 0);

}
Trinity College Dublin 25



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Example: $i = $j
// $i = $j;

{

if (local_i == NULL)

{

local_i = EG (uninitialized_zval_ptr);

local_i->refcount++;

}

zval **p_lhs = &local_i;

zval *rhs;

if (local_j == NULL)

rhs = EG (uninitialized_zval_ptr);

else

rhs = local_j;

if (*p_lhs != rhs)

{

if ((*p_lhs)->is_ref)

{

// First, call the destructor to remove any data structures

// associated with lhs that will now be overwritten

zval_dtor (*p_lhs);

// Overwrite LHS

(*p_lhs)->value = rhs->value;

(*p_lhs)->type = rhs->type;

zval_copy_ctor (*p_lhs);

}

else

{

zval_ptr_dtor (p_lhs);

if (rhs->is_ref)

{

// Take a copy of RHS for LHS

*p_lhs = zvp_clone_ex (rhs);

}

else

{

// Share a copy

rhs->refcount++;

*p_lhs = rhs;

}

}

}

} Trinity College Dublin 26



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Example: printf ($f)
static zend_fcall_info printf_fci;

static zend_fcall_info_cache printf_fcic = { 0, NULL, NULL, NULL };

// printf($f);

{

if (!printf_fcic->initialized)

{

zval fn;

INIT_PZVAL (&fn);

ZVAL_STRING (&fn, "printf", 0);

int result = zend_fcall_info_init (&fn, &printf_fci, &printf_fcic TSRMLS_CC);

if (result != SUCCESS)

{

phc_setup_error (1, "listings_source.php", 8, NULL TSRMLS_CC);

php_error_docref (NULL TSRMLS_CC, E_ERROR,

"Call to undefined function %s()", function_name);

}

}

zend_function *signature = printf_fcic.function_handler;

zend_arg_info *arg_info = signature->common.arg_info; // optional

int by_ref[1];

int abr_index = 0;

// TODO: find names to replace index

if (arg_info)

{

by_ref[abr_index] = arg_info->pass_by_reference;

arg_info++;

}

else

by_ref[abr_index] = signature->common.pass_rest_by_reference;

abr_index++;

// Setup array of arguments

// TODO: i think arrays of size 0 is an error

int destruct[1];

zval *args[1];

zval **args_ind[1];

int af_index = 0;

destruct[af_index] = 0;

if (by_ref[af_index])

{

if (local_f == NULL)

{

local_f = EG (uninitialized_zval_ptr);

local_f->refcount++;

}

zval **p_arg = &local_f;

// We don’t need to restore ->is_ref afterwards,

// because the called function will reduce the

// refcount of arg on return, and will reset is_ref to

// 0 when refcount drops to 1. If the refcount does

// not drop to 1 when the function returns, but we did

// set is_ref to 1 here, that means that is_ref must

// already have been 1 to start with (since if it had

// not, that means that the variable would have been

// in a copy-on-write set, and would have been

// seperated above).

(*p_arg)->is_ref = 1;

args_ind[af_index] = p_arg;

assert (!in_copy_on_write (*args_ind[af_index]));

args[af_index] = *args_ind[af_index];

}

else

{

zval *arg;

if (local_f == NULL)

arg = EG (uninitialized_zval_ptr);

else

arg = local_f;

args[af_index] = fetch_var_arg (arg, &destruct[af_index]);

if (arg->is_ref)

{

// We dont separate since we don’t own one of ARG’s references.

arg = zvp_clone_ex (arg);

destruct[af_index] = 1;

// It seems we get incorrect refcounts without this.

// TODO This decreases the refcount to zero, which seems wrong,

// but gives the right answer. We should look at how zend does

// this.

arg->refcount--;

}

args[af_index] = arg;

args_ind[af_index] = &args[af_index];

}

af_index++;

phc_setup_error (1, "listings_source.php", 8, NULL TSRMLS_CC);

// save existing parameters, in case of recursion

int param_count_save = printf_fci.param_count;

zval ***params_save = printf_fci.params;

zval **retval_save = printf_fci.retval_ptr_ptr;

zval *rhs = NULL;

// set up params

printf_fci.params = args_ind;

printf_fci.param_count = 1;

printf_fci.retval_ptr_ptr = &rhs;

// call the function

int success = zend_call_function (&printf_fci, &printf_fcic TSRMLS_CC);

assert (success == SUCCESS);

// restore params

printf_fci.params = params_save;

printf_fci.param_count = param_count_save;

printf_fci.retval_ptr_ptr = retval_save;

// unset the errors

phc_setup_error (0, NULL, 0, NULL TSRMLS_CC);

int i;

for (i = 0; i < 1; i++)

{

if (destruct[i])

{

assert (destruct[i]);

zval_ptr_dtor (args_ind[i]);

}

}

// When the Zend engine returns by reference, it allocates a zval into

// retval_ptr_ptr. To return by reference, the callee writes into the

// retval_ptr_ptr, freeing the allocated value as it does. (Note, it may

// not actually return anything). So the zval returned - whether we return

// it, or it is the allocated zval - has a refcount of 1.

// The caller is responsible for cleaning that up (note, this is unaffected

// by whether it is added to some COW set).

// For reasons unknown, the Zend API resets the refcount and is_ref fields

// of the return value after the function returns (unless the callee is

// interpreted). If the function is supposed to return by reference, this

// loses the refcount. This only happens when non-interpreted code is

// called. We work around it, when compiled code is called, by saving the

// refcount into SAVED_REFCOUNT, in the return statement. The downside is

// that we may create an error if our code is called by a callback, and

// returns by reference, and the callback returns by reference. At least

// this is an obscure case.

if (signature->common.return_reference

&& signature->type != ZEND_USER_FUNCTION)

{

assert (rhs != EG (uninitialized_zval_ptr));

rhs->is_ref = 1;

if (saved_refcount != 0)

{

rhs->refcount = saved_refcount;

}

rhs->refcount++;

}

saved_refcount = 0; // for ’obscure cases’

zval_ptr_dtor (&rhs);

if (signature->common.return_reference

&& signature->type != ZEND_USER_FUNCTION)

zval_ptr_dtor (&rhs);

} Trinity College Dublin 27



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Applicability

Everything

Perl
PHP
Ruby
Tcl – I think

Trinity College Dublin 28



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Applicability

Everything

Perl
PHP
Ruby
Tcl – I think

Except specification

Lua
Python

Trinity College Dublin 28



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Applicability

Everything

Perl
PHP
Ruby
Tcl – I think

Except specification

Lua
Python

Not at all

Javascript

Trinity College Dublin 28



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Experiences with PHP

Trinity College Dublin 29



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Original Speed-up

0.1x
(10 times slower than the PHP interpreter)

Trinity College Dublin 30



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

The problem with copies

<?php

for ($i = 0; $i < $n; $i++)

$str = $str . "hello";

?>

<?php

for ($i = 0; $i < $n; $i++)

{

$T = $str . "hello";

$str = $T;

}

?>

Trinity College Dublin 31



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Optimization

Constant folding

<?php

...

$T = "5" + true;

...

?>

<?php

...

$T = 6;

...

?>

Trinity College Dublin 32



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Optimization

Constant folding

Constant pooling

<?php

$sum = 0;

for ($i = 0; $i < 10; $i=$i+1)

{

$sum .= "hello";

}

?>

Trinity College Dublin 32



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Optimization

Constant folding

Constant pooling

Function caching

// printf ($f);

static php_fcall_info printf_info;

{

php_fcall_info_init ("printf", &printf_info);

php_hash_find (

LOCAL_ST, "f", 5863275, &printf_info.params);

php_call_function (&printf_info);

}

Trinity College Dublin 32



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Optimization

Constant folding

Constant pooling

Function caching

Pre-hashing

// $i = 0;

{

zval* p_i;

php_hash_find (LOCAL_ST, "i", 5863374, p_i);

php_destruct (p_i);

php_allocate (p_i);

ZVAL_LONG (*p_i, 0);

}

Trinity College Dublin 32



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Optimization

Constant folding

Constant pooling

Function caching

Pre-hashing

Symbol-table removal

// $i = 0;

{

php_destruct (local_i);

php_allocate (local_i);

ZVAL_LONG (*local_i, 0);

}

Trinity College Dublin 32



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Challenges to compilation?

phc solution: use the C API

Speedup

Current speed-up

  0

  0.5

  1

  1.5

  2

  2.5

  3
ac

k
er

m
an

n

ar
y

ar
y

2

ar
y

3

fi
b

o

h
as

h
1

h
as

h
2

h
ea

p
so

rt

m
an

d
el

m
an

d
el

2

m
at

ri
x

n
es

te
d

lo
o

p

si
ev

e

si
m

p
le

si
m

p
le

ca
ll

si
m

p
le

u
ca

ll

si
m

p
le

u
d

ca
ll

st
rc

at

m
ea

n

S
p

ee
d

u
p

 o
f 

co
m

p
il

ed
 b

en
ch

m
ar

k

Trinity College Dublin 33



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Experiences with PHP

Trinity College Dublin 34



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Experiences with PHP

Trinity College Dublin 35



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Intra-procedural optimizations

Dead-code elimination

Sparse-conditional

constant propagation

Trinity College Dublin 36



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Type-inference

<?php

function a ($x, $y)

{

$str = $x . $y;

...

return $str;

}

?>

Trinity College Dublin 37



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

User-space handlers

__toString

__get

__set

__isset

__unset

__sleep

__wake

__call

__callStatic

...

Trinity College Dublin 38



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

C API handlers

read_property

read_dimension

get

set

cast_object

has_property

unset_property

...

Trinity College Dublin 39



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Unknown types propagate

local symbol table

global symbol table

return values

reference parameters

callee parameters

Trinity College Dublin 40



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Experiences with PHP

Trinity College Dublin 41



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Analysis design

Must model types precisely

(Possibly unnamed) fields, arrays, variables and method
calls

Trinity College Dublin 42



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Analysis design

Must model types precisely

(Possibly unnamed) fields, arrays, variables and method
calls

Uses and definitions incomplete

Can’t use def-use chains

Can’t use SSA

Trinity College Dublin 42



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Analysis design

Must model types precisely

(Possibly unnamed) fields, arrays, variables and method
calls

Uses and definitions incomplete

Can’t use def-use chains

Can’t use SSA

Imprecise callgraph

Trinity College Dublin 42



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Algorithm

Abstract Execution / Interpretation

Trinity College Dublin 43



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Algorithm

Abstract Execution / Interpretation

Points-to analysis

*-sensitive

Trinity College Dublin 43



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Algorithm

Abstract Execution / Interpretation

Points-to analysis

*-sensitive

Constant-propagation

Precision
Array-indices/field names
Implicit conversions

A. Pioli. Conditional pointer aliasing and constant propagation.

Master’s thesis, SUNY at New Paltz, 1999.

Trinity College Dublin 43



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Algorithm

Abstract Execution / Interpretation

Points-to analysis

*-sensitive

Constant-propagation

Precision
Array-indices/field names
Implicit conversions

Type-inference

Virtual calls
Function annotations

Trinity College Dublin 43



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Complex cases

Hashtables

Implicit conversions

Variable-variables

$GLOBALS

Static includes

$SESSION

Compiler temporaries

Trinity College Dublin 44



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Interesting thoughts

Strip off first loop iteration

Trinity College Dublin 45



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Interesting thoughts

Strip off first loop iteration

JITs or Gal/Franz Tracing?

Trinity College Dublin 45



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Simple Optimizations

Advanced Optimizations

Interesting thoughts

Strip off first loop iteration

JITs or Gal/Franz Tracing?

Use string transducer analysis

Sound and Precise Analysis of Web Applications

for Injection Vulnerabilities

Gary Wassermann, Zhendong Su, PLDI’07.

Static approximation of dynamically generated Web pages

Yasuhiko Minamide, WWW 2005

Trinity College Dublin 45



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Outline

1 Introduction to phc

2 Current state of phc

Challenges to compilation?

phc solution: use the C API

Speedup

3 Next for phc - Analysis and Optimization

Simple Optimizations

Advanced Optimizations

4 Experiences with PHP

Trinity College Dublin 46



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Opinions and conjecture

Opinions and conjecture

Trinity College Dublin 47



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Opinions and conjecture

Opinions and conjecture
Language Problems

Trinity College Dublin 47



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Opinions and conjecture

Opinions and conjecture
Language Problems

Implementation problems

Trinity College Dublin 47



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Opinions and conjecture

Opinions and conjecture
Language Problems

Implementation problems

Community Problems

Trinity College Dublin 47



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Opinions and conjecture

Fixes

Remove coupling between libraries and interpreter

Better community interactions:

Pre-commit reviews
Mailing list moderation
Per-area maintainers

Love of the language leads to more tools

Trinity College Dublin 48



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Summary

Re-use existing run-time for language

Better yet: standardize libraries (and language?), including

FFI

Analysis needs to be precise, and whole-program

Pessimistic assumptions spread

Language, implementation and community need to be
fixed

All related?

Trinity College Dublin 49



Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Thanks

phc needs contributors

contribute:
http://phpcompiler.org/contribute.html

mailing list: phc-general@phpcompiler.org

slides: http://www.cs.tcd.ie/~pbiggar/

contact: paul.biggar@gmail.com

Trinity College Dublin 50

http://phpcompiler.org/contribute.html
phc-general@phpcompiler.org
http://www.cs.tcd.ie/~pbiggar/
paul.biggar@gmail.com


Introduction to phc

Current state of phc

Next for phc - Analysis and Optimization

Experiences with PHP

Complex cases

Hashtables

Implicit conversions

Variable-variables

$GLOBALS

Static includes

$SESSION

Compiler temporaries

Trinity College Dublin 51


	Introduction to phc
	Current state of phc
	Challenges to compilation?
	phc solution: use the C API
	Speedup

	Next for phc - Analysis and Optimization
	Simple Optimizations
	Advanced Optimizations

	Experiences with PHP

